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1 Introduction

Very low (femtomolar) concentrations of isoprenaline, a β2 adrenergic recep-
tor agonist, appear to activate a significant fraction of HEK293 cells grown
in 96-well plates. Here, we develop and analyze a mathematical model based
on chemical kinetics to determine whether the observed cell activation can
be explained by a simple ligand-receptor interaction. Our analysis indicates
that a significant fraction of cells can be activated if engagement of one or
two receptors is sufficient to trigger a cellular response.

2 Binding model

2.1 Model definition

In this section we define a model to characterize the kinetics of ligand-receptor
binding for a population of cells:

L + Ri

kf−⇀↽−
kr

Bi (1)
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where i is an index denoting a particular cell, L represents free ligand, R
represents the unbound receptor, B represents the occupied receptor, and
kf and kr are the association and dissociation rate constants, respectively.
Activation of a cell is taken to be proportional to the number of occupied
receptors:

Bi + Ci
kact−−→ Bi + C∗

i (2)

where kact is the activation rate constant, C represents an inactive cell and C∗

represents an active cell. Note that Ci has a value of 1 until activation and
0 thereafter. In addition to the kinetic parameters, we also introduce fc, the
fraction of cells competent to be activated by the ligand. This parameter is
introduced to account for any intracellular conditions (gene expression levels,
cell cycle state, etc.) that may prevent a cell from responding to ligand.

Figure 1: Fraction of responsive HEK293 cells at two distinct doses after a
5 minute exposure to isoprenaline. Prior to ligand stimulation, cells were
grown to 70% confluence in 96-well plates. Estimated parameters for the
environment are listed in Table 1 and described in the Materials and Methods
section in the main text.
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2.2 Simulation

For the low ligand concentration of 1 fM, we simulated the stochastic ligand-
receptor binding kinetics using Gillespie’s algorithm (1). This approach is
not computationally feasible when considering the high ligand concentration
of 100 nM, because the number of reaction events per unit time scales linearly
with the number of molecules in the system. There are 120,440 and 1.2×1013

ligand molecules per well for the low and high concentrations, respectively.
Note that copy numbers are used for abundances in these simulations, and
so the concentrations of the biochemical species and the association rate
constant, kf , must be converted to the appropriate units:

#M = [M ] ·NA · V (3)

kf,# =
kf

NA · V
(4)

where V is the extracellular volume (see Table 1), M is some biochemical
species and NA is the Avogadro constant.

When considering high ligand concentrations (e.g. 100 nM), we make a
quasi steady-state approximation for the ligand-receptor interaction. We can
then calculate the concentration of occupied receptors in the well since the
total concentration of ligand, [LT], greatly exceeds the total concentration of
receptor, [RT]:

[B] = [RT] · kf [LT]

kr + kf [LT]
(5)

We can also calculate the average concentration of occupied receptors per
cell:

〈[Bi]〉 =
[B]

Ncells

(6)

The fraction of cells, FA, that are active after a time t is:

FA = 1− e−λ·t (7)

where λ = kact · 〈[Bi]〉 is the average rate of activation for each cell. For
kact > 10−4 s−1, all cells are activated in less than a minute when [B] ≈ [RT].

3 Parameter estimation

We used a Bayesian approach to estimate the following parameters in our
model:
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• kr and kact, which are rate constants in the model defined above with
units of s−1

• KD, which is the equilibrium dissociation constant in molar units (M)
for ligand-receptor binding and can be used to calculate kf , given kr

• fc, which is the fraction of cells competent for activation (dimension-
less)

Our procedure uses a Markov chain Monte Carlo (MCMC) algorithm to es-
timate a probability distribution for each parameter similar to the procedure
outlined in (2). In Bayesian statistics, this estimated distribution is called
a parameter’s posterior. For each parameter set sampled during the MCMC
run, estimating the posterior requires calculating both the probability of ob-
serving the experimental data given a particular set of parameters (called
the likelihood) and the probability of the parameters given an assumed prob-
ability distribution (the parameter’s prior distribution).

Two parameters’ means and standard deviations have already been char-
acterized in the literature, log10KD and kr (3; 4). We assign log10KD to
have a normal distribution as its prior:

P (log10KD) = Normal (µ = −9.768, σ = 0.612) (8)

where µ and σ are the mean and standard deviation of a normal distribu-
tion, respectively. Assuming normality for kr results in significant probability
density for values below zero. We therefore assign kr to have a gamma distri-
bution as its prior, where the gamma distribution’s parameters (α and β) are
calculated such that the distribution’s mean (α/β) and standard deviation
(
√
α/β2) correspond to the mean and standard deviation reported in the

literature, 0.05 and 0.02552, respectively:

α

β
= 0.05 (9)

α

β2
= 0.02552 (10)

P (kr) = Gamma (α = 3.845, β = 76.894) (11)

The prior for the fraction of competent cells, fc, can be specified based on
our data as follows. We assume that 100 nM ligand is a saturating dose
that should activate all competent cells, and so we calculate the mean and
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Parameter Value
Volume of medium 200 µL per well
Number of cells 30,000 per well
Receptors 18,000 per cell

Table 1: Fixed model parameters

standard deviation of the 100 nM data in Fig. 1 and assign fc to have the
normal distribution:

P (fc) = Normal (µ = 0.711, σ = 0.092) (12)

where µ and σ are calculated from the data in Fig. 1. The rate of receptor-
dependent cell activation relies on incomplete knowledge of the relevant sig-
naling pathways. However we can still constrain this parameter to have a
uniform prior distribution over a finite range. We assume that the activation
rate must be sufficiently fast to activate cells given potential values of kr,
and that excessively fast activation rates are not physically realizable. Thus,
we set:

P (log10 kact) = Uniform (−4, 2) (13)

Other fixed parameters used in the model are recorded in Table 1.
Our MCMC sampling was performed for 1,000,000 iterations with a con-

stant jump size of 0.2 (in log space), and we discarded the first 10,000
points as the burn-in period. Parameter updates were accepted using the
Metropolis-Hastings criterion, with approximately 37% of the attempted up-
dates being rejected. The sampling trace for log10KD can be seen in Fig. 2
and appears to have reached stationarity. From such a sampling trace, we
can characterize the posterior distribution of each parameter. As can be seen
in Fig. 3, the posteriors for three of the four free parameters strongly reflect
their priors. The exception, kact reveals a posterior that is shifted towards
larger values, with near uniformity for parameters larger than 0.01. From
the MCMC sampling, we can also extract the maximum a posteriori proba-
bility, or MAP, estimate. The MAP estimate is the point in parameter space
analogous to a “best-fit” parameter set, and it is equivalent to the mode of
the posterior distribution.

We can further characterize the correlations between the free parameters
by looking at their pairwise scatter plots (Fig. 4). As it turns out, all
pairwise relationships result in a Spearman’s rank correlation coefficient, ρ,
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Figure 2: The MCMC sampling trace for log10KD. The first 10,000 points
were discarded as the burn-in period (sampled points prior to reaching sta-
tionarity). A total of 990,000 sampled points are shown here.
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Figure 3: Posterior distributions for the four free parameters. Each black
bar indicates the parameter value from the maximum a posteriori probability
estimate. Each dashed curve indicates a prior distribution.
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of less than 0.05, meaning that dependency between any pair of parameters
is unlikely.

4 Model predictions

We can make a number of predictions based on the behavior of the model.
Using data from our MCMC sampling approach, we can calculate credible
intervals for the timecourse of ligand binding at the low ligand concentration.
As can be seen in Fig. 5, the 95% credible interval from 1000 subsampled
parameter sets is wide.

We can also characterize the distributions of binding events per cell for
the low ligand concentration. Of course this depends on the parameters. For
the parameter values corresponding to the maximum a posteriori probability
estimate, we found that nearly 70% of the cell population encountered less
than 2 ligand molecules, and that about 10% had more than 2 binding events
in the allotted time (Fig. 6). Indeed, the average number of binding events is
approximately one per cell. The small number of binding events that occur
at low ligand concentration are likely reflected in the posterior distribution
for kact. For activation to occur in the small number of cells that engage a
ligand, the cell must be sufficiently sensitive (i.e., kact must be sufficiently
large) to activate the cell within one or two binding events. Our model
therefore predicts that the observation of cells responding to femtomolar
concentrations of ligand (Fig. 1) requires that the cells must be sufficiently
sensitive to respond to just one or two binding events.

Finally, we found the values for the fastest association rate and slowest
dissociation rate published in literature (1.2 × 1010 (M ·min)−1 and 4.8 ×
10−4

(
min−1

)
, respectively). We inputted these values into our model and

fixed kact and fc to their corresponding values from the MAP estimate pa-
rameter set. With this “super ligand” we found that our model predicts an
average of one binding event per cell for ligand concentrations as low as 25
attomolar (i.e. 2.5× 10−17 M)
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Figure 4: Pairwise relationships between the four free parameters, where
the number of points is downsampled for clarity. The diagonal contains
downsampled posterior distributions similar to those seen in Fig. 3.
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Figure 5: (A) The 95% credible interval for 1 fM ligand concentration time-
courses using 1,000 randomly subsampled parameter sets from the MCMC
run. Shown in red is the timecourse whose parameters correspond to the
maximum a posteriori probability (MAP) estimate. The blue solid line corre-
sponds to the median of the subsampled parameter sets, and the blue dashed
lines in the timecourse denote the 95% credible interval for the subsampled
parameter sets. Note that two of the data points are outliers, resulting from
the fact that only a small region (∼ 2%) of sampled parameter space allows
the model to reach those points. (B) The fraction of active cells for the
same subsampled parameter sets, but with the 100 nM ligand concentration.
Note that simulations with 100 nM ligand are based on a quasi steady-state
approximation. Colors are the same as in panel (A) and black data points
in both panels correspond to those in Fig. 1.
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Figure 6: Normalized frequency of binding for 1 fM ligand concentration from
100 independent model simulations with the parameter set corresponding
to the maximum a posteriori probability estimate. The average number of
binding events is 1.13.
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